Beech Hill Primary School Knowledge Organiser

Topic: Computing	Year group	Term
Computer Science : Micro Bits	Year 3	Summer 2
		6 sessions

Background knowledge

A BBC MicroBit is a pocket-sized codeable computer. It has 25 red LEDs that light up, flash messages etc. It has two programmable buttons. It can be used as a games controller (e.g Kodu). It has an on board motion detector, a built in compass and Bluetooth connectivity.

See: 10 Activities for the BBC MicroBit by CAS

What should I already know?

Children have learned to make things happen in a sequence, creating simple animations and simulations by using time blocks. Children can write code with 'if statements', which select different pieces of code to execute depending on what happens to other objects. They can design apps of their own using if statements.

National Curriculum Objectives / Key Skills	The Journey	
To design, write and debug programs using	1. Children are introduced to the MicroBit and	
sequences and variables.	how to connect it. They create a smiley face,	
	then make it appear on the MicroBit by	
To explain how some simple algorithms work	downloading and dragging or pasting the .hex	
and to detect and correct errors in	file.	
algorithms and programs with support.	2. Input commands: Children make a scrolling name badge.	
I can create programs that use sequences	3. Children create a dice emulator. When the	
and variables to achieve given goals.	MicroBit shakes, it chooses a random number.	
	Can the children then change in the inout	
I can explain how my algorithm works and	command from shake to something else, like a	
begin to detect errors with support.	button press.	
	4. Using the buttons - children create a game	
	of chance using the buttons.	
	5. Children create version of rock paper	
	scissors where the selection depends on their	
	input commands.	
	6. Variables: Children create a thermometer	
	by adding a variable.	

Outcomes

An overview of what children will know / can do

Working towards: With support from an adult or my friends, I can create a simple programmes to make the LEDs on my MicroBit respond. I can sometimes spot when things are not working as they should.

Expected: Children can work with a partner write and debug codes for a piece of hardware. They will use different input commands, conditionals and variables.

Exceeding: Children can take the lead in writing and debugging codes for a piece of hardware. They will use different input commands, conditionals and variables, and can predict and experiment with what happens when these are changed.

Key Vocabulary

Algorithm - a set of instructions which can be given to complete a task both on hardware and unplugged activities.

Conditional - a part of the code that will only happen "if".

Debug - to spot errors and correct them.

Input - the numbers you put into the variables. Instructions - to tell someone or a device what to do.

LED - a light emitting diode.

Program - to give instructions to a person or device.

Variable - An object used to store a simple piece of information, such as a score or the time taken.

Timeline / Diagrams

Key people / places

The first visible-spectrum (red) LED was developed in 1962 by Nick Holonyak, Jr. while working at General Electric.

Assessment questions / outcomes

- 1. What are the lights called on a MicroBit?
- 2. Which one of the blocks do you need to make your name scroll on the MicroBit?
- 3. What different ways (inputs) can you make the dice pick a number?
- 4. How can you make the MicroBit show two different messages?
- 5. Which block do we use to make a picture appear on the MicroBit?