Calculation Policy Addition and Subtraction Years 1-6

Year 1

+ = signs and missing numbers

Children need to understand the concept of equality before using the '=' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.

$$2 = 1 + 1$$

 $2 + 3 = 4 + 1$

Missing numbers need to be placed in all possible places.

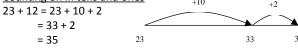
Counting and Combining sets of Objects

Combining two sets of objects (aggregation) which will progress onto adding on to a set (augmentation)

Understanding of counting on with a numbertrack.

Understanding of counting on with a numberline (supported by models and images).

7+4



Year 2

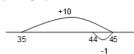
Missing number problems e.g $14 + 5 = 10 + \Box$ 32 + 🗆 + 🗆 = 100 $35 = 1 + \square + 5$

It is valuable to use a range of representations (also see Y1). Continue to use numberlines to develop understanding of:

Counting on in tens and ones

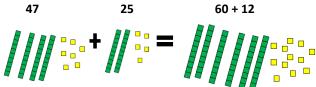
Partitioning and bridging through 10.

The steps in addition often bridge through a multiple of 10 e.g. Children should be able to partition the 7 to relate adding the 2 and then the 5.


8 + 7 = 15

Adding 9 or 11 by adding 10 and adjusting by 1

e.g. Add 9 by adding 10 and adjusting by 1


35 + 9 = 44

Towards a Written Method

Partitioning in different ways and recombine

47+25

Leading to exchanging:

72

Expanded written method

$$60 + 12 = 72$$

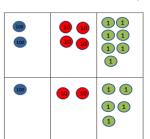
$$+ \frac{20 + 5}{60 + 12} = 72$$

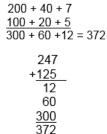
Year 3

Missing number problems using a range of equations as in Year 1 and 2 but with appropriate, larger numbers.

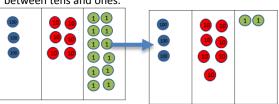
Partition into tens and ones

Partition both numbers and recombine.


Count on by partitioning the second number only e.g.


$$= 347 + 20 + 5$$

Children need to be secure adding multiples of 100 and 10 to any three-digit number including those that are not multiples of 10.


Towards a Written Method

Introduce expanded column addition modelled with place value counters (Dienes could be used for those who need a less abstract representation)

Leading to children understanding the exchange between tens and ones.

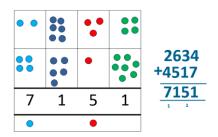
Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method.

Year 4

Year 6

Missing number/digit problems:

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods (progressing to 4-digits)


Expanded column addition modelled with place value counters, progressing to calculations with 4-

digit numbers.

Compact written method

Extend to numbers with at least four digits.

Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty.

Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits).

72.8

+ 54.6 127.4 1 1

Missing number/digit problems:

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency e.g. 12462 + 2300 = 14762

Year 5

Written methods (progressing to more than 4-digits)

As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm.

172.83 + 54.68 227.51 1 1 1

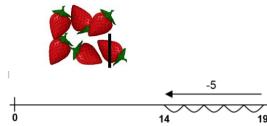
Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.

Missing number/digit problems:

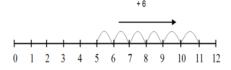
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

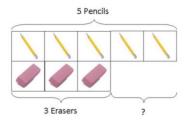
Written methods

As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places


Problem Solving

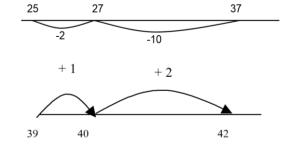
Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.


Year 1

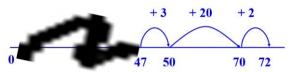

Missing number problems e.g. $7 = \square - 9$; $20 - \square = 9$; $15 - 9 = \square$; $\square - \square = 11$; $16 - 0 = \square$ Use concrete objects and pictorial representations. If appropriate, progress from using number lines with every number shown to number lines with significant numbers shown.

Understand subtraction as take-away:

Understand subtraction as finding the difference:


The above model would be introduced with concrete objects which children can move (including cards with pictures) before progressing to pictorial representation.

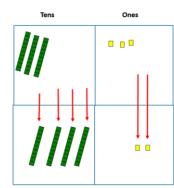
The use of other images is also valuable for modelling subtraction e.g. Numicon, bundles of straws, Dienes apparatus, multi-link cubes, bead strings


Year 2

Missing number problems e.g. $52 - 8 = \Box$; $\Box - 20 = 25$; $22 = \Box - 21$: $6 + \Box + 3 = 11$

It is valuable to use a range of representations (also see Y1). Continue to use number lines to model take-away and difference.

The link between the two may be supported by an image like this, with 47 being taken away from 72, leaving the difference, which is 25.

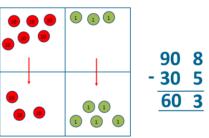


The bar model should continue to be used, as well as images in the context of **measures**.

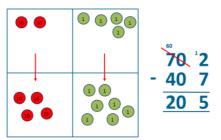
Towards written methods

E.g.

Recording addition and subtraction in expanded columns can support understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers. The numbers may be represented with Dienes apparatus. E.g. 75-42


Year 3

Missing number problems e.g. $\Box = 43 - 27$; $145 - \Box = 138$; $274 - 30 = \Box$; $245 - \Box = 195$; $532 - 200 = \Box$; $364 - 153 = \Box$


Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving (see Y1 and Y2). Children should make choices about whether to use complementary addition or counting back, depending on the numbers involved.

Written methods (progressing to 3-digits)

Introduce expanded column subtraction with no decomposition, modelled with place value counters (Dienes could be used for those who need a less abstract representation)

For some children this will lead to exchanging, modelled using <u>place value counters</u> (or <u>Dienes</u>).

A number line and expanded column method may be compared next to each other.

Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method.

Year 4	Year 5	Year 6
Missing number/digit problems: 456 + = 710; 1=7 + 6= 200; 60 + 99 + = 340; 200 - 90 - 80 = ; 225 - = 150; - 25 = 67; 3450 - 1000 = ; - 2000 = 900 Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods (progressing to 4-digits) Expanded column subtraction with decomposition, modelled with place value counters, progressing to calculations with 4-digit numbers.	Missing number/digit problems: 6.45 = 6 + 0.4 + □; 119 - □ = 86; 1 000 000 - □ = 999 000; 600 000 + □ + 1000 = 671 000; 12 462 - 2 300 = □ Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Written methods (progressing to more than 4-digits) When understanding of the expanded method is secure, children will move on to the formal method of decomposition, which can be initially modelled with place value counters.	Missing number/digit problems: □ and # each stand for a different number. # = 34. # + # = □ + □ + #. What is the value of □? What if # = 28? What if # = 21 10 000 000 = 9 000 100 + □ 7 - 2 x 3 = □; (7 - 2) x 3 = □; (□ - 2) x 3 = 15

The National Curriculum in England. ©Crown Copyright 2013 Year 1 objectives

Statutory requirements

- read, write and interpret mathematical statements involving addition (+), subtraction
 (-) and equals (=) signs
- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and two-digit numbers to 20, including zero
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = □ − 9.

The National Curriculum in England. ©Crown Copyright 2013 Year 1 guidance

Notes and guidance (non-statutory)

Pupils memorise and reason with number bonds to 10 and 20 in several forms (for example, 9 + 7 = 16; 16 - 7 = 9; 7 = 16 - 9). They should realise the effect of adding or subtracting zero. This establishes addition and subtraction as related operations.

Pupils combine and increase numbers, counting forwards and backwards.

They discuss and solve problems in familiar practical contexts, including using quantities. Problems should include the terms: put together, add, altogether, total, take away, distance between, difference between, more than and less than, so that pupils develop the concept of addition and subtraction and are enabled to use these operations flexibly.

The National Curriculum in England. ©Crown Copyright 2013

Year 2 objectives

Statutory requirements

- solve problems with addition and subtraction:
 - using concrete objects and pictorial representations, including those involving numbers, quantities and measures
 - applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
 - a two-digit number and ones
 - a two-digit number and tens
 - two two-digit numbers
 - adding three one-digit numbers
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

The National Curriculum in England. ©Crown Copyright 2013 Year 2 guidance

Notes and guidance (non-statutory)

Pupils extend their understanding of the language of addition and subtraction to include sum and difference.

Pupils practise addition and subtraction to 20 to become increasingly fluent in deriving facts such as using 3 + 7 = 10; 10 - 7 = 3 and 7 = 10 - 3 to calculate 30 + 70 = 100; 100 - 70 = 30 and 70 = 100 - 30. They check their calculations, including by adding to check subtraction and adding numbers in a different order to check addition (for example, 5 + 2 + 1 = 1 + 5 + 2 = 1 + 2 + 5). This establishes commutativity and associativity of addition.

Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers.

The National Curriculum in England. ©Crown Copyright 2013 Year 3 objectives

Statutory requirements

- add and subtract numbers mentally, including:
 - a three-digit number and ones
 - a three-digit number and tens
 - a three-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

The National Curriculum in England. ©Crown Copyright 2013 Year 3 guidance

Notes and guidance (non-statutory)

Pupils practise solving varied addition and subtraction questions. For mental calculations with two-digit numbers, the answers could exceed 100.

Pupils use their understanding of place value and partitioning, and practise using columnar addition and subtraction with increasingly large numbers up to three digits to become fluent (see <u>Mathematics Appendix 1</u>).

The National Curriculum in England. ©Crown Copyright 2013 Year 4 objectives

Statutory requirements

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.

The National Curriculum in England. ©Crown Copyright 2013 **Year 4 guidance**

Notes and guidance (non-statutory)

Pupils continue to practise both mental methods and columnar addition and subtraction with increasingly large numbers to aid fluency (see English Appendix 1).

The National Curriculum in England. ©Crown Copyright 2013 **Year 5 objectives**

Statutory requirements

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which
 operations and methods to use and why.

The National Curriculum in England. ©Crown Copyright 2013 Year 5 guidance

Notes and guidance (non-statutory)

Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency (see Mathematics Appendix 1).

They practise mental calculations with increasingly large numbers to aid fluency (for example, 12 462 – 2300 = 10 162).

The National Curriculum in England. ©Crown Copyright 2013

Year 6 objectives

Statutory requirements

Pupils should be taught to:

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method
 of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

135

Mathematics

Statutory requirements

- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

The National Curriculum in England. ©Crown Copyright 2013 Year 6 guidance

Notes and guidance (non-statutory)

Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division (see Mathematics Appendix 1).

They undertake mental calculations with increasingly large numbers and more complex calculations.

Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency.

Pupils round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50 etc., but not to a specified number of significant figures.

Pupils explore the order of operations using brackets; for example, $2 + 1 \times 3 = 5$ and $(2 + 1) \times 3 = 9$.

Common factors can be related to finding equivalent fractions.